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Abstract
Simulating the mechanical response of PDC drill bits contains a lot of uncertainties. Rock and fluid
properties are generally poorly known, complex interactions occur downhole and physical models can
hardly capture the full complexity of downhole phenomena. This paper presents a statistical approach that
improves the reliability of the PDC bit design optimization process by ensuring that the expected directional
behavior of the drill bit is robust over a well-defined range of drilling parameters.

It is first examined how uncertainty propagates through an accurate bit/rock interaction model which
simulates numerically the interaction between a given PDC drill bit geometry and a given rock formation,
both represented as 3D meshed surfaces. Series of simulations have been launched with simulation
parameters defined as probability density functions. The focus has been set on directional drilling
simulations where the drill bit is subjected to significant variations in contact loads on gage pads along
its trajectory. A global sensitivity analysis has also been performed to identify the key parameters which
control drilling performance.

Directional system parameters are critical in terms of steerability and tool face control, particularly in
high dogleg severity applications. Based on these simulations, a statistical optimization strategy has then
been implemented to ensure that the directional performance of the drill bit remains effective under a
given uncertain drilling environment. Statistical analysis combined with drilling simulations indicated that
ROP improvements could even be achieved without compromising steerability. A balanced bit design was
selected and manufactured in an 8 1/2-in. model to drill a 714 ft section of a Kuwait field. The bit was run
on a high dogleg rotary steerable system and directional assembly. The bit achieved the high steerability
goals required by the application while showing a good compatibility with the directional tool. Moreover,
ROP was increased by approximately 27% compared to offset wells, setting a record rate of penetration
in the field.

Whereas statistical analyses are commonly conducted in the field of geosciences, it has rarely been
applied in the field of drilling applications. The statistical bit design optimization strategy deployed in this
work has allowed to improve both the drilling performance of the drill bit and its reliability.
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Introduction

Parameter uncertainty and variability in directional drilling
Rotary steerable systems are among the most advanced technologies in the drilling industry. They are
designed to achieve directional goals with accuracy and reliability, in deep and harsh drilling environments.
High dogleg severity (DLS) applications increase the complexity of these operations.

Among the major sources of perturbation to the planned well trajectory are the BHA components involved
in the directional behavior of the drilling structure: the directional system itself can exhibit a variable
mechanical response (Spencer et al., 2013). Other BHA components can also impact the variability of this
response, like the drillbit, the stabilizers and the drillcollars interacting with the borehole wall (Chen et al.,
2007; Barton et al. 2009).

A second major source of variability is the rock. Although the average lithology of a well is generally
known, rock characteristics are highly variable over a sedimentary basin and along a drilling section (Cuillier
et al., 2017). Rock characteristics are also uncertain at a smaller scale (Amri et al., 2016). Depending on the
heterogeneity or the anisotropy of the rock, its mechanical characteristics may vary significantly (Boualleg,
2006).

Statistical tools used to optimize the bit design process
Under these constraints, the simulation of the mechanical response of PDC drill bits is an inherently
uncertain and variable process. In this paper, a statistical approach has been developed in order to grasp
the complexity of these interactions by accounting for parameter uncertainty and variability as described
in Begg et al. (2014). Whereas statistical analyses are commonly conducted in the field of geosciences
(Rodriguez et al., 1988; Tague, 2000; Li and Bai, 2012, Bazargan et al., 2013), it is less common to tackle
drilling problems (Spanos et al., 2002; Gradl et al., 2008). In this study, two main statistical tools have been
implemented to ensure that the directional performance of an optimized bit design was achieved over wide
range of drilling conditions.

The first of these tools is called uncertainty propagation. It basically consists in defining a space of
Nd input parameters of the model. Each parameter is considered as a random variable following a given
distribution law, also called probability density functions (PDF).

A common example of a PDF is the uniform law which states that a given random variable can take
values within a given range with the same probability. This law can be used for example to describe the
variability of a parameter which evolves in time or space without any particular value to be reached. Another
common example is the normal law, also known as the gaussian distribution, which is used to describe a
wide variety of physical processes. It can be used to describe the variability of a measurable parameter
which is known with some degree of uncertainty. This parameter is given an average value and a standard
deviation which fully define the PDF. The most probable value taken by the parameter is its average. The
probability that the parameter takes another value decreases exponentially as it departs from the average.
The standard deviation determines the percentage of the population of values of this parameter which lie
within a given range around the average. For example, assuming the given parameter follows a normal law
of average μ and standard deviation σ implies that 68.25% of its values range within [μ-σ, μ+σ] and 95.45%
range within [μ-2σ, μ+2σ]. These percentages refer to the theoretical normal law. In practice, they may vary
depending on how many samples of this parameter are picked. The higher this number, the more accurate
these percentages.

Once each PDF is determined, a dedicated algorithm is used to generate a given number of samples N of
the parameter space. Each of these samples consists in a combination of Nd randomized values which serve
as inputs to the given model. Simulations are repeated N times to generate an output sample. In this paper,
the model refers to a drill bit simulator and the output of the model consists in a set of directional drilling
performance indicators described in the next sections. The higher the size of the sample N, the better the



SPE-197359-MS 3

statistical convergence of the outputs. In other words, computing the average or the standard deviation of a
given performance indicator over a range of input parameters is all the more accurate as N increases.

Since this is one of the main goals of this study to estimate the average and the standard deviation of
several of these indicators, N plays a critical role. Indeed, in this study, Nd may range between 10 and
15 depending on the assumptions made. The typical sample size corresponding to such a parameter space
dimension is 10k-100k. Knowing that a directional simulation ran with a 3D bit simulator like the one
described in Pelfrene et al. (2019) typically lasts 1-10 minutes on a standard laptop, the total simulation
time to obtain accurate statistical results ranges between 1 week and 2 years depending on the complexity
of the simulation.

Fortunately, the second statistical tool implemented in this study, the sensitivity analysis, allows to
optimize the dimension of the parameter space by focusing on the most influential input parameters and
fixing the less influential ones. There are different classes of sensitivity analyses which have been described
in the literature (Saltelli et al., 2008; Baudin et al., 2015). In this study, 2 of them have been used: the Morris
sensitivity analysis, which belongs to the class of the screening methods; and the Sobol analysis which
belongs to the class of global sensitivity analyses.

Screening methods are a class of sensitivity analyses which is used to obtain a relatively fast and
qualitative assessment on the influence of the different parameters of the problem (Baudin et al., 2015). In
particular, the Morris analysis exhibits linear dependencies between inputs and outputs. In this method, the
parameter space is sampled as a regular grid containing a given number of levels between the minimum
and the maximum range for each parameter. For example, 3 levels correspond to sampling the minimum,
the maximum and the mid-point for each parameter of the parameter space. Based on this grid, the effect
of each parameter is computed along a given number of trajectories Nt, typically 10. The typical number of
simulations for such an analysis is Nd * Nt, i.e. roughly 100.

Whereas the Morris analysis may exhibit major trends, it does not provide a quantitative assessment on
the influence of the different input parameters. This is provided by the global sensitivity analyses (Saltelli et
al., 2008). Among them, the Sobol sensitivity analysis is widely used. It basically allows to estimate which
percentage of the variability of an output, a given input parameter variability is responsible for. Hence, this
is a very powerful tool to rank parameters' influence. However, this method usually requires to heavily
sample the parameter space. Assuming for example Nd = 10, a typical Sobol analysis is performed with
N = 10k-100k.

Content
In the first section of this paper, the directional model and its parameters are presented. Then, the statistical
approach developed to select the cutting structure is described, from the parameter space description to the
results of the Sobol sensitivity analysis. The uncertainty propagation leading to the selection of the optimal
cutting structure is then presented. In the third section, the statistical approach developed to select the gage
configuration is described. A different strategy is presented from the parameter space description to the
results of the Morris sensitivity analysis. The uncertainty propagation leading to the selection of the optimal
gage configuration is then described. In the last section, the application of the whole statistical approach to
the targeted bit run in a high dogleg application in a Kuwait field is presented.

Directional simulations with a 3D bit simulator
The 3D bit simulator used to conduct directional simulations presented in this paper has been described
in detail in Pelfrene et al. (2019). In the following section, we focus on describing the directional model
parameters that will be used by the different statistical analyses presented in the next section. The model
follows a kinematic approach which relies on two distinct submodels.
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Geometric model
The first submodel aims at computing the geometry of the bit/rock interaction, including the geometry of the
hole drilled, the interactions between the cutters and the hole and the interactions between the non-cutting
parts of the drill bit (i.e. the gages, the blades and other tool face contact elements) and the hole.

To compute these interactions, it is necessary to prescribe the well trajectory and the bit movement
relative to this trajectory. To simplify the analysis, the trajectory is assumed to be two-dimensional (i.e. no
turn considered). Thus, the well trajectory can be simply defined by 4 parameters allowing to model most
common trajectories (straight/vertical, build/drop or kick-off sections). These parameters are the depth at
the top of the section (depth in), the depth at the bottom of the section (depth out), the build rate at the top
(build rate in) and the build rate at the bottom (build rate out). The trajectory mathematical definition can
be reduced to only 2 independent parameters, which are the build rate and the rate of increase of the build
rate along the section. In the analyses presented below, it is further assumed that the build rate is constant
throughout the section, so that only one parameter is required to describe the well trajectory: the build rate.
It is added to the parameter space (PS) of the analysis:

(1)

Well trajectories described above can be achieved by a variety of directional systems like bent-motors,
rotary steerable systems (RSS) or hybrid systems. Directional drilling systems involve complex, proprietary
mechanical components which makes them difficult to model with accuracy. Rather than trying to model the
complexity of these systems knowing that most of their core parameters are simply unknown, the approach
followed in this paper consists in using a simplified 4-parameters model for the directional system. And
to account for the complexity of it by making these 4 parameters evolve as random variables. These 4
parameters are the rotary RPM, the motor RPM, the bit tilt and the distance between the bit and the pivot
point. As shown in Fig. 1, it applies differently depending on the drive. In accordance with the drive used
in the field application presented in the last section of the paper, we will focus on the point-the-bit model.

Figure 1—the 4-parameters directional model applied to 4 distinct directional drilling contexts

The point-the-bit model is defined by 3 parameters, which are thus added to the parameter space defined
in (1):

(2)

In a kinematic approach, the build rate and the bias are independent. In reality, the former is determined
by the latter. Hence, it is up to the modeler to decide which combination of these parameters is representative
of the reality. It strongly depends on the directional system mechanical behavior, but it can be approximated
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by using a 3-point geometry formula or some other kind of empirical relationship (Marchand and Kalantari,
2013). Again, this simplification of the model will be somehow compensated by letting these parameters
evolve as random variables. Then, a high number of simulations will be run trying to make the statistical
estimators converge.

Physical model
Based on the computation of local geometric interactions, local forces can be computed. Fig. 2 shows the
negative view of the hole geometry (in brown) drilled by a given bit design, the cutting volumes removed
by each cutter (in orange) with the associated cutting forces (blue vectors) and the contact volumes (in
red) with the associated contact forces (blue vectors). This kind of interactions where the gages of the bit
significantly engage the borehole wall is typical from a directional simulation. Once the local forces are
determined, they can be summed in order to provide global forces like the WOB (red-straight vector along
Z axis), the side force (red-straight vector in the X-Y plane) and the TOB (red-circular vector).

Figure 2—view of all bit-rock interactions computed by the 3D bit simulator

A variety of models are available in the literature to compute local cutting forces (Zijsling, 1987;
Detournay and Defourny, 1992; Pelfrene et al., 2011; Amri et al., 2018). For the purpose of this study, local
cutting forces have been computed based on a modified version of the cutting model developed by Gerbaud
(1999) (Fig. 3).

Figure 3—schematic description of the cutting model
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The main modification consists in neglecting the so-called back cutter forces arising from an elasto-
plastic upward deformation of the rock at the back of the cutter. Except for this effect, the equations of the
cutting model are very similar and involve the following physical parameters: the unconfined compressive
strength of the rock (UCS); its internal friction angle (IFA); the cutting friction angle (cufa) which measures
the friction between the cutter face and the cutting chip; the bit depth and the mud density (dmud) which
both contribute to determine the hydrostatic mud pressure which tends to strengthen the rock. Adding these
parameters to (2) leads to:

(3)

Just like cutting models, several contact models exist in the literature to compute local contact forces. For
the purpose of this study, local contact forces have been computed based on the Hertz contact model with
the assumption that bit contact parts are infinitely rigid in comparison to the rock. Equations of the model
are described in Pelfrene et al. (2019) and involve 2 parameters which have been considered as random
variables in this study, the Young's modulus of the rock (E) and its contact friction angle (cofa). Adding
them to (3), gives:

(4)

Conclusion
The directional model used in this study involves a variety of geometrical and physical parameters. Whatever
the complexity of such model, applying it to a 3D bit simulator in order to simulate actual field conditions
generally exhibits significant discrepancies with downhole measurements.

These discrepancies can be either due to the assumptions of the model (simplifications); to the inherently
uncertain nature of rock parameters; to the change in lithology along the drilling section; to a lack of
knowledge on the specifications of the mechanical systems modeled; or to a simple variability of drilling
and directional parameters set by the driller.

The main task of this paper is to account for the variability of the parameters identified above in order to
understand how it impacts the directional performance of a given bit design. The operational objective is to
make the bit design optimization process more robust by ensuring the performance of a given bit design is
guaranteed over a statistically representative range of downhole conditions.

Statistical analysis for cutting structure selection

Cutting structures description
The first step of the bit design process consists in selecting a cutting structure which will achieve a good
ROP while delivering a high steerability with an optimal tool face control.

Since the formation to be drilled is known for its heterogeneity, hardness and abrasiveness, a relatively
heavy-set cutting structure is needed to ensure its durability along the run. 2 cutting structures that would
fit the objectives of the application have been pre-selected: V716P (A20874) and V713P (A20629):

– V716P (A20874) is a 7 bladed bit design with a majority of 16mm PDC cutters and a double row of
underexposed PDC cutters on each blade.

– V713P (A20629) is also a 7 bladed bit design mainly with 13mm PDC cutters and a double row of
PDC cutters on each blade.

Fig. 4 shows the associated 2D bit profiles and main characteristics as well as the 3D views of the cutting
structure.
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Figure 4—A20874 / A20629 2D bit profiles, characteristics and 3D views

Statistical approach
Prior to running heavy simulations in a directional context, a preliminary set of simulations have been run in
a straight drilling context with a proprietary 2D bit simulator described in detail in Carlos (2017) and Cuillier
et al. (2017). In this context, the parameter space (4) reduces to 7 independent parameters listed in Table 1.

Table 1—parameter scenario for Sobol sensitivity analysis on the straight drilling model

Distribution Unit Avg Sthev Min Max

ROP Uniform ft/hr - - 30.0 50.0

RPM Fixed RPM 100.0 - - -

Bit Depth Uniform kft - - 9.0 11.0

Mud density Fixed lb/gal 11.6 - - -

UCS Normal ksi 12.0 1.0 - -

IFA Normal ° 30.0 1.0 - -

cufa Normal ° 11.0 0.5 - -

The statistical approach consists first in setting the PDF for each of them. The type of law as well as its
characteristics has a significant influence on results. Hence, it must be defined with care while accounting
for the reality of the application of interest and the actual knowledge we may have on it (Begg et al., 2014).

Additionally, some of these parameters interact with eachother. This does not mean that these parameters
depend on eachother, it means that the model is impacted by a combination of them rather than each of
them independently. The first set of interacting parameters are RPM and ROP. Indeed, the parameter that
drives the hole geometry is the ratio ROP/RPM rather than ROP and RPM independently. It allows to make
only one of them vary while fixing the other. Thus, the RPM has been fixed to its average value. And the
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ROP, which varies in time, has been defined as a uniform distribution within a target range of maximum
achievable ROP representative of the application.

The second set of interacting parameters are bit depth and mud density. Indeed, the parameter that drives
the mud pressure in the model involves the product (bit depth x mud density). Thus, the mud density has
been fixed to its average value. And just like the ROP, the bit depth parameter, which varies in time, has
been defined as a uniform distribution within the section drilled.

Other parameters have been defined as standard normal distributions, with their average values
corresponding to the average values of the section drilled and their standard deviation corresponding to a
reasonable uncertainty.

A statistical sample of this parameter space has then been generated. Just like other statistical tools used
in this study, the algorithm used to generate this sample belongs to the Python OpenTurns library (Baudin
et al., 2015). This algorithm is based on an implementation of a random design of experiment named
‘Sobol indices experiment’. The size of the experiment was set to 5000, which, with Nd = 5 independent
variable parameters considered, led to a total of 80k samples. The diagonal of the crossplot in Fig. 5
shows how the size of the experiment allows the empirical distributions to converge well towards the
theoretical distributions. The empirical statistical moments (average, standard deviation, min, max) of these
distributions have also been compared to the theoretical ones set in Table 1, and they match closely. From the
non-diagonal terms, it can also be noted that the chosen design of experiment evenly fills in the parameter
space, without exhibiting any gaps or anisotropy. From these observations, we thus expect the results of the
statistical analysis to fairly represent the reality of the selected parameter scenario.

Figure 5—crossplot of the input parameters used for the Sobol sensitivity analysis on the straight drilling model

Uncertainty propagation through the 2D model
For each bit design and for each of the 80k parameters combinations, one straight drilling model simulation
has been run. The comparative performance of A20874 vs A20629 has been done based on 3 classically
used performance indicators: the WOB and the TOB to estimate the aggressiveness of the cutting structure
in axial mode and torsional mode respectively. The % imbalance (imb), which is defined as the ratio (in
%) of the side force to the WOB and which measures the tendency of the bit to drill off-center. These 3
indicators have been computed by the simulator. The corresponding crossplots and statistical moments are
shown in Fig. 6.
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Figure 6—A20874 / A20629 performance comparison based on statistical straight drilling simulations

These results show that A20874 is in average more aggressive than A20629 both axially and torsionally
since, in average, it requires significantly less WOB and TOB in the range of given ROP. On the contrary,
A20629 is better balanced in average than A20874. Considering that around 95% of the values reached
by the imbalance range within [μ-2σ, μ+2σ], we can also confirm that both cutting structures remain well
below the disqualifying 5 % imbalance in the whole range of the parameter space. Moreover, although the
imbalance of A20874 is about twice the imbalance of A20629, the variability of the former is quite close to
the variability of the latter. Interestingly, the distribution of the former roughly follows a normal distribution,
whereas the distribution of the latter roughly follows a uniform law. Based on these observations, we can
deduce that the imbalance response of A20874, yet higher than A20629's one, is relatively more reliable in
the range of variation of the parameter space.

Global sensitivity analysis on the 2D model
Based on the same design of experiment, a global sensitivity analysis (Sobol analysis) has been performed
on both bit designs in order to determine the most influential parameters and estimate whether it was possible
to fix some of them to reduce the dimension of the parameter space. The results of this analysis are shown
in Fig. 7, for A20874 only, since A20629 shows exactly the same trends.
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Figure 7—Sobol indices computed based on the statistical straight drilling model (A20874)

First, the relatively small error bars surrounding each data points on these plots indicates a good statistical
convergence of the computation. Second, the relatively small differences between the first order Sobol
indices (red dots) and the corresponding total order Sobol indices (blue dots) indicates that there is no
significant interactions between the 5 variable parameters (Saltelli et al., 2008).

Based on these preliminary observations, results mainly show that between 70% and 95% of the
variability of the 3 performance indicators are explained by the variability of the ROP alone. All other
parameters correspond to physical model parameters and are much less influential. Unfortunately, the only
parameter which significantly affects the computation time of a 3D bit simulator is the ROP. Consequently,
these results are not sufficient to allow us to fix the ROP in the directional drilling scenario considered in
the next section.

Conclusion
Results obtained with the statistical analysis implemented in this section show that selecting the A20874
cutting structure represents a good trade-off between a good aggressiveness allowing to reach elevated ROP
and a good balancing well below the disqualifying standards. The statistical approach also tends to show
that A20874 balancing should be relatively robust within the wide range of parameters considered.

Statistical analysis for gage configuration selection
Based on the A20874 cutting structure selected in the previous section, 4 different gage configurations have
been pre-selected and a statistical analysis has been implemented to select the optimal one. The primary
goal of the application is to deliver a high steerability bit design able to provide an optimal tool face control
in a demanding short radius well.
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Description of gage configurations
In order to best match the gage configuration selection to the given RSS drive system of the application, 4
different geometries were pre-selected (Fig. 8):

– Stepped Gage (SG) – A20874: 2″ full diameter + 1″ undercut, to provide some space for a bit tilt
mechanism to activate and reduce lateral reactive forces.

– Full Gage (FG) – A20820: 3″ full diameter gage configuration usually adapted to non directional
application but which can be used in certain tangent trajectory with soft formation to prevent dropping
tendency.

– Undercut Gage 1 (UG1) – A21110: 2″ undercut gage to allow for maximum lateral displacement and
low reactive forces.

– Undercut Gage 2 (UG2) – A20717: 1″ undercut + 1″ undercut + 1″ undercut to allow both maximum
lateral displacement and maximum bit tilt.

Figure 8—the 4 pre-selected gage configurations

Directional simulations and directional performance indicators
Due to the intrinsically three-dimensional nature of the directional problem, simulations are conducted with
the 3D bit simulator described at the beginning of this paper, which is based on the same physical models
as the 2D bit simulator presented in the previous section. In this section, some of the results provided by
the 3D bit simulator are described and a set of directional performance indicators used in the statistical
analysis are defined.

Fig. 9 compares the bit/rock interactions computed for a single sample of directional parameters defined
in (4), applied to the 4 gage configurations. It shows that A20874-SG and A20820-FG significantly engage
the borehole wall as revealed by the large contact geometry on their gage pads and the associated local
contact forces (blue vectors). In comparison, A20717-UG2 and A21110-UG1 do not engage it significantly.
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Figure 9—comparison of bit/rock interactions for the 4 gage configurations

In the following, two major outputs of these computations will be used: the total side force and the walk
angle (Ho, 1995). The total side force is defined as the projection of the total force exerted on the drillbit
on the X-Y plane, the Z-axis pointing parallel to the well axis. The side force vector can be seen in Fig. 9
(A20874-SG and A20820-FG) as a red vector at the bottom of the bit. Note that in a directional context,
most of the side force vector intensity comes from the contacts on the gage pads rather than from the cutting
forces. Note also that the side force for A20717-UG2 and A21110-UG1 is too small to be observed.

The walk angle is defined as the angle between the side force vector and the direction of the bit side
movement. As the 3D bit simulator is based on a kinematic approach, the latter corresponds to the direction
in which the bit is tilted, and the orientation of the side force is an output of the simulation. Most bit designs
walk left, or in other words have a negative walk angle. Fig. 10 shows the evolution of these 2 directional
outputs over a bit revolution.
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Figure 10—evolution of the side force and the walk angle over a bit revolution for the 4 gage configurations

These plots show that the side force and the walk angle vary much over a bit revolution. This observation
led us to analyse both the average of the side force and the walk angle, but also the variability of these
outputs over a bit revolution. Four directional drilling performance indicators have thus been defined:

– “Average steerability”: simply defined here as the average side force over a bit revolution. Indeed,
under a given directional movement (kinematic approach), a first drill bit generating less side force
than a second one, can be considered as more steerable. Note that this definition is valid provided that
drillbits are compared with respect to the same parameter scenario, which is the case in this study.

– “Average walk tendency”: defined as the average walk angle over a bit revolution
– “Instantaneous steerability”: defined as the standard deviation of the side force over a bit revolution

and subjected to the same remark as the average steerability.
– “Instantaneous walk tendency”: defined as the standard deviation of the walk angle over a bit

revolution

These 4 directional performance indicators have been used in the statistical analysis presented in the next
sections to compare the directional response of the 4 gage configurations.

Morris sensitivity analysis on the 3D directional model
The directional parameter space (4) contains 11 independent parameters which makes a statistical analysis
impractical to run in the limited time frame of the bit manufacturing process. In this section, a sensitivity
analysis is performed to reduce the dimension of the model.

We focus on parameters which strongly influence the simulation time: rop, bias, bit-to-bias and build rate.
As a global sensitivity analysis would have been too long to perform with the 3D bit simulator, a screening
method has been chosen to reduce the simulation time while providing valuable qualitative results. The
Morris method has been selected, with a standard grid setting of 4 levels and 10 trajectories, leading to a
total number of 50 simulations. The corresponding parameter scenario is shown in Table 2.
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Table 2—parameter scenario for Morris sensitivity analysis on the directional model

Distribution Unit Avg Sthev Min Max

Depth in Fixed kft 9.0 - - -

Depth out Fixed kft 11.0 - - -

Build rate in Uniform °/100ft - - 5.0 10.0

Build rate out = Build rate in °/100ft - - - -

Bias Uniform ° - - 0.5 0.7

Bit-to-bias Uniform ft - - 1.5 3.0

ROP Uniform ft/hr - - 10 50

RPM Fixed RPM 100 - - -

Bit Depth Fixed kft 10.0 - - -

Mud density Fixed lb/gal 11.6 - - -

UCS Normal ksi 12.0 - - -

IFA Normal ° 30.0 - - -

Cufa Normal ° 11.0 - - -

E Uniform GPa 3.0 - - -

Cofa Uniform ° 40.0 - - -

This scenario sets the distribution of the 4 parameters listed above as uniform in order to determine their
respective influence on the directional drilling performance indicators with minimal assumptions on their
actual field values.

The results of the Morris analysis performed on the directional model with bit design A20874-SG are
plotted in the Morris diagram (μ*, σ) in Fig. 11. In this diagram, μ* designates the average of the absolute
value of the effect of each individual parameter on the output. The higher this value, the higher the effect.
σ designates the standard deviation of the effect of each individual parameter on the output. When σ is low
(typical lower than 0.5μ*, i.e. the dashed line of the diagram), it means that the effect of the input on the
output is linear and that the input does not interact with another input. When σ is high, it means that the
effect is non-linear or that the input interacts with another input. Only the 4 directional drilling performance
indicators defined above have been plotted.

Fig. 11 (top left) indicates that the average steerability is mainly influenced by the bias and varies linearly
with it in the range of values set by the scenario. Fig. 11 (bottom left) indicates that the instantaneous
steerability is mainly influenced by the ROP and varies linearly with it. Fig. 11 (top right and bottom right)
shows some non-linearities in the model or some interactions between the input parameters with respect
to the average and the instantaneous walk tendency. A more advanced sensitivity analysis would help to
discriminate between non-linearities and interactions. But it is believed that there are some significant
interactions between the bias, the bit-to-bias and the build rate because the three of them directly impact the
relative tilting movement of the bit inside the borehole.
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Figure 11—Morris diagrams of the directional drilling model (A20874-SG)

Besides, Fig. 11 (top right) shows that the effect of these parameters on the average walk tendency is
limited in amplitude. This is confirmed by Fig. 12 which illustrates the variability of the 4 directional drilling
performance indicators with the help of crossplots. The variability of the average walk is indeed limited
to a small 5° range. On the contrary, the variability of the instantaneous walk tendency is significantly
higher [4.0°-18.0°]. However, Fig. 11 (bottom right) shows that the most influential parameters on the
instantaneous walk tendency are the rop and the bias.

Figure 12—crossplots of the directional performance indicators in Morris analysis parameter scenario (A02874-SG)

In conclusion, the Morris analysis and the associated uncertainty propagation through the 3D directional
model, although being conducted on a very limited number of samples (50), tend to show that the bias and
the ROP are the most influential parameters of the 4 parameters considered on the directional performance
indicators. Build rate and bit-to-bias can thus be fixed as having a limited influence. Although being very
influential, ROP shows some strong linearity with the outputs. Hence, it should only impact the gage
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selection process by amplifying the tendencies and not by altering them. ROP will thus be fixed too in order
to limit further the simulation time.

Uncertainty propagation through the 3D directional model
The Morris analysis has allowed us to reduce the model dimension. Among the parameters significantly
influencing the simulation time, only the bias remains. In this section, other parameters of the parameter
space (4) are injected back into the analysis and listed in Table 3.

Table 3—parameter scenario used for the uncertainty propagation through the directional model

Distribution Unit Avg Sthev Min Max

Depth in Fixed kft 9.0 - - -

Depth out Fixed kft 11.0 - - -

Build rate in Fixed °/100ft 8.0 - - -

Build rate out Fixed °/100ft 8.0 - - -

Bias Discrete Uniform ° - - 0.5 0.7

Bit-to-bias Fixed ft 2.0 - - -

ROP Fixed ft/hr 50 - - -

RPM Fixed RPM 100 - - -

Bit Depth Uniform kft - - 9.0 11.0

Mud density Fixed lb/gal 11.6 - - -

UCS Normal ksi 12.0 1.0 - -

IFA Normal ° 30.0 1.0 - -

cufa Normal ° 11.0 0.5 - -

E Uniform GPa - - 2.0 4.0

cofa Uniform ° - - 30.0 50.0

The decision to fix some parameters in this table has been justified above in this paper. Among the
remaining variable parameters, some of them are poorly known in the application, like the Young's modulus
and the contact friction angle (cofa). Some others simply vary much within the drilling interval, like the bit
depth. For both these parameters, a uniform distribution law has been used. Some others are well known
measurable and do not vary much within the drilling section, like the UCS, the IFA and the cutting friction
angle (cufa). The last one, the bias, has a major effect on the simulation time. In order to further reduce
the simulation time, it has been decided to use a discrete uniform distribution rather than a continuous one
to account for the uncertainty of the directional system. The discrete set of values the bias can randomly
take has been sized to 10.

The design of experiment chosen to generate the statistical sample is the Latin Hypercube Sampling.
This quasi-random algorithm allows to efficiently sample the whole range of the parameter space without
requiring as many samples as the Monte Carlo experiment for example. The size of the experiment was set
to 1000. Fig. 13 shows how empirical distributions converge well towards theoretical distributions. On the
first row and column of the plot, it can be noticed the typical pattern of the bias discrete uniform distribution
in the min/max range given the table above. Although the whole sample is much less dense than the one used
in the statistical analysis of the straight drilling model (Fig. 5), we still expect the results of the statistical
analysis to fairly represent the reality of the selected parameter scenario.
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Figure 13—crossplots of the input parameters used for the uncertainty propagation through the directional model

For each of the 4 gage configurations and for each of the same 1000 parameters combinations, one
directional drilling simulation has been run. Based on which, the 4 directional performance indicators have
been computed. The resulting crossplots are shown in Fig. 14.

Figure 14—crossplots of the 4 directional performance indicators for the uncertainty
propagation through the directional model applied to the 4 gage configurations

Empirical distributions for A20874-SG, A20820-FG and A21110-UG1 show very similar patterns. On
the contrary A20717-UG2 exhibits a clustering pattern in the average walk tendency distribution and to a
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lesser extent in the instantaneous sideforce distribution. This pattern is believed to be due to 2 factors: as
observed in Fig. 9 the gage pads of this design do not engage much the borehole wall whereas the bias is
set to 0.6°. Now the bias is set to vary between 0.5° and 0.7°, the bit response is likely to jump between a
situation of no engagement at all to a situation of continuous engagement. The second factor which could
amplify this clustering effect is the fact that the distribution of the bias is discrete.

The statiscal moments corresponding to the 4 directional performance indicators and the 4 gage
configurations are plotted in Fig. 15.

Figure 15—statistical moments of the 4 directional performance indicators for the
uncertainty propagation through the directional model applied to the 4 gage configurations

In terms of steerability, the following results are observed:

– The ranking in terms of average steerability ‘avg(sideForce)’ are A20717-UG2 > A21110-UG1 >
A20874-SG > A20820-FG

– ‘stdev(sideForce)’ interestingly indicates that the variability of the average steerability over the range
of parameters simulated is significantly lower for A20874-SG than for A20820-FG.

– This result somehow compensates the higher average of the instantaneous steerability
‘stdev(sideForce)’ observed on A20874-SG in comparison to A20820-FG.

In terms of walk tendency:

– All gage configurations walk left around −40° (‘avg(walk)’), except for A20717-UG2 which walks
left at about −20°.

– A20874-SG and A20820-FG walk left steadily, i.e. with a limited variability over the range of
parameters ‘stdev(walk)’

– considering the average of the instantaneous walk tendency ‘avg(walkStdev)’, the differences
between A20874-SG and A20820-FG are not significant and the values of the instantaneous walk
tendency are not significant neither.

Conclusion
The statistical analysis conducted in this section shows that the A20874-SG gage configuration is the
best trade-off between a good level of average steerability and a standard average walk tendency. It also
demonstrates that although the variability per revolution of A20874-SG is higher than that of A20820-FG,
its variability on the whole range of parameters of the statistical experiment is lower. This unexpected result
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tends to show how robust the A20874-SG bit design behaves under uncertain conditions, which should ease
its tool face control.

Case study: high dogleg application in a Kuwait field

Field Application
The 8 1/2-in. bit A20874-SG resulting from this design selection process was used to drill in an important
reservoir in Kuwait. The reservoir formation drilled typically shows a variable quality and heterogeneity. It
is mainly a sand base section with shale intervals. This field has been developed for many decades and is
an appropriate application for this RSS PDC bit design process to further push the optimization process.

The bit was run on a non-motorized RSS BHA, and drilled using a standard oil based mud (OBM) drilling
fluid. The WOB was between 10 and 22 Klb at approximately 100 RPM. The short radius wells had a
secondary KOP at approximately 9,450 ft and a built angle from 46° to approximately 88.5° at 10,190 ft MD.

Run details
An in-house petrological analysis software based on mud logs and described in Cuillier et al. (2017) has
confirmed the range of UCS used in this paper (Fig. 16). The assumption of relatively homogeneous
formations all along the section at around 10-15 kpsi has also been confirmed.

Figure 16—petrological result plot and bit dull pictures
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Directional response analysis
The observed directional reponse of the drill bit is shown in (Fig. 17) with inclination/azimuth and DLS
evolution versus measured depth. It appears that downlink were regularly made along the section with
different Tool Face angle orientations and different Percentage of Power transmitted to the point-the-bit
system. The bit allowed the achievement of high DLS up to 8.5°/100ft when using 50% to 60% power on
the RSS Point-the-bit system (Fig. 17).

Figure 17—BHA directional response and RSS setting

Performance results and comparison
The bit drilled 714 ft (217 m) at a record ROP of 31.7 ft/hr (Fig. 18) while building angle from 46° to
88.5° inclination and turning from 272.5° to 249°. The bit achieved a 49% ROP improvement compared to
the offset average in this application. The dull grade for the bit is 1-2-BT-G-X-I-WT-TD as can be seen in
the pictures above. The bit contributed to an efficient drilling coupled with an excellent directional control
which resulted in a new ROP benchmark in the area (Fig. 18)

Figure 18—performance chart comparison on 8 1/2-in. section
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Conclusion
In this paper, a statistical approach has been developed to improve the reliability of the PDC bit design
optimization process and ensure that the expected directional behavior of a given drill bit is robust over a
well-defined range of drilling parameters.

A variety of tools have been developed in order to analyse and understand the statistical response of a
directional model implemented in a 3D bit simulator. The parameter space has been defined with respect to
the constraints of the field application. A sensitivity analysis has been conducted on the model to determine
the most influential parameters. This has allowed to reduce the dimension of the problem and hence to
compute an optimal number of simulations. Uncertainties have been propagated through the 3D directional
model to determine the optimal bit design according to a set of directional performance indicators.

The statistical approach has been applied to an 8 1/2-in. bit design drilling a 714 ft section of a Kuwait
field application. Based on this methodology, a bit design has been selected and manufactured. The bit was
run on a high dogleg rotary steerable system and directional assembly. The bit achieved the high steerability
goals required by the application while showing a good compatibility with the directional tool. Moreover,
ROP was increased by 27% compared to offset wells, setting a record in the field.
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